Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Gaming the system is a persistent problem in Computer-Based Learning Platforms. While substantialprogress has been made in identifying and understanding such behaviors, effective interventions remainscarce. This study uses a method of causal moderation known as Fully Latent Principal Stratification toexplore the impact of two types of interventions – gamification and manipulation of assistance access –on the learning outcomes of students who tend to game the system. The results indicate that gamificationdoes not consistently mitigate these negative behaviors. One gamified condition had a consistentlypositive effect on learning regardless of students’ propensity to game the system, whereas the other had anegative effect on gamers. However, delaying access to hints and feedback may have a positive effect onthe learning outcomes of those gaming the system. This paper also illustrates the potential for integratingdetection and causal methodologies within educational data mining to evaluate effective responses to detectedbehaviors.more » « less
-
Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)The effectiveness of feedback in enhancing learning outcomes is well documented within Educational Data Mining (EDM). Various prior research have explored methodologies to enhance the effectiveness of feedback to students in various ways. Recent developments in Large Language Models (LLMs) have extended their utility in enhancing automated feedback systems. This study aims to explore the potential of LLMs in facilitating automated feedback in math education in the form of numeric assessment scores. We examine the effectiveness of LLMs in evaluating student responses and scoring the responses by comparing 3 different models: Llama, SBERT-Canberra, and GPT4 model. The evaluation requires the model to provide a quantitative score on the student's responses to open-ended math problems. We employ Mistral, a version of Llama catered to math, and fine-tune this model for evaluating student responses by leveraging a dataset of student responses and teacher-provided scores for middle-school math problems. A similar approach was taken for training the SBERT-Canberra model, while the GPT4 model used a zero-shot learning approach. We evaluate and compare the models' performance in scoring accuracy. This study aims to further the ongoing development of automated assessment and feedback systems and outline potential future directions for leveraging generative LLMs in building automated feedback systems.more » « less
-
The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to "detector rot." We compare the generalizability of Knowledge Training (KT) models by comparing model performance in predicting student knowledge within the academic year and across academic years. Models were trained on data from two popular open-source curricula available through Open Educational Resources. We observed that the models generally were highly performant in predicting student learning within an academic year, whereas certain academic years were more generalizable than other academic years. We posit that the Knowledge Tracing models are relatively stable in terms of performance across academic years yet can still be susceptible to systemic changes and underlying learner behavior. As indicated by the evidence in this paper, we posit that learning platforms leveraging KT models need to be mindful of systemic changes or drastic changes in certain user demographics.more » « less
-
The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to ”detector rot.” We compare the generalizability of Knowledge Training (KT) models by comparing model performance in predicting student knowledge within the academic year and across academic years. Models were trained on data from two popular open-source curricula available through Open Educational Resources. We observed that the models generally were highly performant in predicting student learning within an academic year, whereas certain academic years were more generalizable than other academic years. We posit that the Knowledge Tracing models are relatively stable in terms of performance across academic years yet can still be susceptible to systemic changes and underlying learner behavior. As indicated by the evidence in this paper, we posit that learning platforms leveraging KT models need to be mindful of systemic changes or drastic changes in certain user demographics.more » « less
-
The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to ”detector rot.” We compare the generalizability of Knowledge Training (KT) models by comparing model performance in predicting student knowledge within the academic year and across academic years. Models were trained on data from two popular open-source curricula available through Open Educational Resources. We observed that the models generally were highly performant in predicting student learning within an academic year, whereas certain academic years were more generalizable than other academic years. We posit that the Knowledge Tracing models are relatively stable in terms of performance across academic years yet can still be susceptible to systemic changes and underlying learner behavior. As indicated by the evidence in this paper, we posit that learning platforms leveraging KT models need to be mindful of systemic changes or drastic changes in certain user demographics.more » « less
-
Teachers often rely on the use of a range of open-ended problems to assess students’ understanding of mathematical concepts. Beyond traditional conceptions of student openended work, commonly in the form of textual short-answer or essay responses, the use of figures, tables, number lines, graphs, and pictographs are other examples of open-ended work common in mathematics. While recent developments in areas of natural language processing and machine learning have led to automated methods to score student open-ended work, these methods have largely been limited to textual answers. Several computer-based learning systems allow students to take pictures of hand-written work and include such images within their answers to open-ended questions. With that, however, there are few-to-no existing solutions that support the auto-scoring of student hand-written or drawn answers to questions. In this work, we build upon an existing method for auto-scoring textual student answers and explore the use of OpenAI/CLIP, a deep learning embedding method designed to represent both images and text, as well as Optical Character Recognition (OCR) to improve model performance. We evaluate the performance of our method on a dataset of student open-responses that contains both text- and image-based responses, and find a reduction of model error in the presence of images when controlling for other answer-level features.more » « less
An official website of the United States government

Full Text Available